1. (a) Show that $\sum_{r=1}^{n}(r+1)(r+5)=\frac{1}{6} n(n+7)(2 n+7)$.
(b) Hence calculate the value of $\quad \sum_{r=10}^{40}(r+1)(r+5)$
(Total 6 marks)
2. (a) Expand brackets and attempt to use appropriate formulae.
$\Sigma r^{2}+6 r+5=\frac{n}{6}(n+1)(2 n+1)+6 \frac{n}{2}(n+1)+5 n$ A1
$=\frac{n}{6}\left[2 n^{2}+3 n+1+18 n+18+30\right]$ M1
$=\frac{n}{6}\left[2 n^{2}+21 n+49\right]=\frac{n}{6}(n+7)(2 n+7)\left(^{*}\right)$
A1 4
(b) Use $S(40)-S(9)=\frac{40}{9} \times 47 \times 87-\frac{9}{6} \times 16 \times 25$ $=26660$
3. (a) On the whole, candidates were able to expand $(\mathrm{r}+1)(\mathrm{r}+5)$ accurately and were able to substitute correctly for $\Sigma \mathrm{r}^{2}, \Sigma \mathrm{r}$ and to deal with $\Sigma 5$ correctly - the provision of the answer helped many to check the accuracy of their subsequent expansions, collection of terms and factorisation! A small group of candidates attempted Mathematical Induction, but rarely correctly, most being daunted by the algebra involved.
(b) For those not working out $\mathrm{S}(40)-\mathrm{S}(9)$, the most common mistake was to use $\mathrm{S}(40)$ $\mathrm{S}(10)$, although some returned to using $(r+1)(r+5)$ with $r=40$, and 9 or 10 ; some just calculated $\mathrm{S}(40)$, totally ignoring the starting value of r.
